of Super Absorbents



General Properties

Polyelectrolytes are polymers with dissociating groups in their repeat units. They can be divided into polycations and polyanions and polysalts. Like ordinary electrolytes (acids, bases and salts), they dissociate in aqueous solutions (water) and bear one or more charges depending on the pH value. Thus, the properties of polyelectrolytes are similar to both electrolytes and polymers. The salts, i.e. the products of a polyacids (polyanions) with a monomeric base and vice versa are called polysalts. Like regular salts, their solutions are electrically conductive and like polymers, their viscosity strongly depends on the molecular weight and polymer concentration.

The type of dissociating groups in the polyelectrolyte determines its solubility in water and in other polar and hydrogen-bonding liquids (alcohols etc.). For example, a sulfonated linear polystyrene readily dissolves in water whereas polystyrene itself is one of the most water-resistant polymers.

The cross-linked polyelectrolytes form three-dimensional structures that swell in water rather than dissolving in it. They can retain (extremely) large amounts of liquid relative to their own mass through hydrogen bonding with water molecules. They are called hydrogels and superabsorbent polymers (SAP’s) when (slightly) cross-linked. The SAP's ability to absorb water is a factor of the ionic concentration of the aqueous solution. In deionized and distilled water, a SAP may absorb water up to 500 times its weight and from 30 to 60 times its own volume, that is, the hydrogel can consist of more than 99% liquid. The total absorbency and swelling capacity of SAP’s is controlled by the type and degree of cross-linkers.

Both natural and synthetic polyelectrolytes are manufactured on a large scale. Common natural polyelectrolytes are pectin (polygalacturonic acid), alginate (alginic acid), carboxymethyl cellulose and polypeptides. Examples of common synthetic polyelectrolytes are polyacrylic acid, polystyrene sulfonate and their salts.

The most common acid groups are –COOH, –SO3H, and –PO3H2 and the most common basic group is –NH2.


Physicochemical Properties

The properties of polyelectrolytes in solution are determined by the electrostatic interaction between the charged groups in the chain and the low-molecular-weight ions in the solution. The strong electrostatic field generated by the charges in the polyelectrolyte has a significant effect on the structure of the molecule, that is, it substantially alters the macromolecular conformations; with increasing degree of dissociation, the effective size of the chains (end-to-end distance, hydrodynamic radius, etc.) increases, and the coiled molecules straightens out reaching an approximately linear, stick-like shape at high degrees of polyelectrolyte dissociation.
The physicochemical properties undergo considerable alteration when the degree of dissociation changes. For example, the solution viscosity can increase by a factor of a hundred or more depending on the concentration, degree of polyelectrolyte dissociation and free ion concentration (low-molecular-weight ions in the solution).

The theory that was developed for solutions of low-molecular-weight electrolytes is not valid for polyelectrolyte solutions. The low-molecular-weight ions that appear during the dissociation of polar groups of the polyelectrolytes create a diffuse shell around the oppositely charged surface of the polymer and may to some degree be replaced by other ions of like sign.

Charged molecular chains commonly present in soft matter systems have a noticeable effect on the structure, stability and the interactions of various molecular assemblies. Theoretical approaches to describe their statistical properties differ profoundly from those of their electrically neutral counterparts. Many technological and industrial fields exploit their unique properties. Many biological molecules are polyelectrolytes. For instance, polypeptides and DNA’s are polyelectrolytes.


COMMERCIAL Polyelectrolytes

Commercial grades of polyelectrolytes (PAA's) are available from Dow Chemical (Duramax, Tamol™, Romax™, Dowex), Rohm and Haas (Acusol™,Acumer™, BASF (Dispex®, Magnafloc®), and Arkema (Rheoslove™, Terrablend).


PolyelectrolyteStructure of Repeat UnitTrade Name
Polyacrylic acid (PAA)
Acusol (copolymer), Acumer, Acrysol, Alcosperse
Polystyrene sulfonate
Resonium, Sorbisterit, Resikali



Polyelectrolytes have many applications, mostly related to modifying flow and improving the stability of aqueous colloids and gels or to induce agglomeration. For instance, they can be used to destabilize a colloidal suspension and to initiate flocculation and precipitation. They can also be used to impart a surface charge to neutral particles, enabling them to be dispersed in an aqueous solution. They are thus often used as thickeners, dispersant agents, conditioners, emulsifiers, ion-exchanger and clarifying agents. For example, they are used in water treatment as flocculation agents, in ceramic slurries as stablizing agents and in concrete mixtures as superplasticizers. Furthermore, many shampoos, soaps and cosmetics contain polyelectrolytes. Certain polyelectrolytes are also added to food products; for example, as food coatings and release agents. Examples are pectin (polygalacturonic acid), alginate (alginic acid), and carboxymethyl cellulose. All but the last are of natural origin.

Because polyelectrolytes are water-soluble, they are also used in biochemical and medical applications such as implant coatings and controlled drug release systems.

Large quantities of slightly cross-linked sodium polyacrylate-polyacrylamide copolymers, called hydrogels, are used as super absorbents (SAPs). The largest use of SAPs is found in baby diapers and other personal disposable hygiene products, such as adult protective underwear and sanitary napkins. The global super absorbent polymer market is expected to grow at a rate of 5.5% from 2014 to 2019 to reach a value of $ 8.56 billion.1



1Global Super Absorbent Polymers Market - Forecast to 2019, DUBLIN, July 2, 2014 - PRNewswire - Research and Markets

Polymer Properties Database

Theromophysical Data

Key data on over two hundred
and fifty polymers

Polymers Index

Typical Performance

Properties of commercial commodity and engineering plastics

Plastics  Index

Physics of Polymers

Physical and mechanical properties
of polymers

Phys. Contents

Chemistry of Polymers

Chemical properties and synthesis of organic polymers

Chem. Contents